
Fast Fourier Transforms and

Signal Processing

Jake Blanchard

University of Wisconsin - Madison

Spring 2008

Introduction

 I’m going to assume here that you know
what an FFT is and what you might use it
for.

 So my intent is to show you how to
implement FFTs in Matlab

 In practice, it is trivial to calculate an FFT
in Matlab, but takes a bit of practice to
use it appropriately

 This is the same in every tool I’ve ever
used

FFTs of Functions

 We can sample a function and then take

the FFT to see the function in the

frequency domain

 Of course, we must sample often enough

to avoid losing content

 The script on the following page samples

a sine wave

Sampling a sine wave

fo = 4; %frequency of the sine wave

Fs = 100; %sampling rate

Ts = 1/Fs; %sampling time interval

t = 0:Ts:1-Ts;

n = length(t); %number of samples

y = 2*sin(2*pi*fo*t);

plot(t,y)

YfreqDomain = fft(y);

stem(abs(YfreqDomain));

axis([0,100,0,120])

www.blinkdagger.com

Output

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Correlating x-axis with frequencies

 The previous plot just uses the element

number as the row axis.

 In reality, each data point represents a

frequency.

 These frequencies are calculated from the

sampling rate

 The routine on the next page puts this

together.

◦ Send a dataset and sampling rate

A Useful Function

function [X,freq]=positiveFFT(x,Fs)

N=length(x);

k=0:N-1;

T=N/Fs;

freq=k/T; %create the frequency range

X=fft(x)/N; % normalize the data

cutOff = ceil(N/2);

X = X(1:cutOff);

freq = freq(1:cutOff);

Key Calling Statements

fo = 4; %frequency of the sine wave

Fs = 100; %sampling rate

Ts = 1/Fs; %sampling time interval

t = 0:Ts:1-Ts;

n = length(t); %number of samples

y = 2*sin(2*pi*fo*t);

[YfreqD,freqRng] = positiveFFT(y,Fs);

stem(freqRng,abs(YfreqD));

New Plot

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Freq (Hz)

A
m

p
lit

u
d
e

Using the positiveFFT function

FFT of Imported Data

 We can read in sampled data and a

sample rate and then take an FFT

 The file touchtone.mat contains a

ringtone waveform for an 11 digit phone

number (from Moler text)

 The commands to create a vector

appropriate for sampling are on the next

slide

Script for first number dialed

load touchtone

Fs=y.fs

n = length(y.sig); % number of samples

t = (0:n-1)/y.fs; % Time for entire signal

y = double(y.sig)/128;

t=t(1:8000) % take first 8,000 samples

y=y(1:8000)

plot(t,y)

Time Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Output Spectrum

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Freq (Hz)

A
m

p
lit

u
d
e

Using the positiveFFT function

What number was dialed?

 To figure out which number was dialed,

look at this grid

What is second number?

 Take the next set of data and figure out

which number was dialed.

 Try points from 8,000 to 15,000

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Zero Padding (blinkdagger.com)

 FFTs work with vectors containing a

number of elements which is an even

power of 2

 If you have data which is not a power of 2,

you can fill with 0’s

 This will get you faster performance and

better resolution

Example

 Beats: y=sin(2f1t)+sin(2f2t)

 Let f1=4Hz and f2=4.5Hz

 Sample at 100 Hz

 Take FFT with and without padding

Not Padded

0 1 2 3 4 5 6 7 8 9

5

10

15

20

25

30

35

40

45

50

Freq (Hz)

A
m

p
lit

u
d
e

Zero-Padded

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

30

35

40

45

50

55

FFT of Sample Signal: Zero Padding up to N = 1024

Freq (Hz)

M
a
g
n
it
u
d
e

Script

zeroPadFac= nextpow2(length(y)) + 3;

[a,b] = posFFTzeropad(y,Fs,2^zeroPadFac);

%

function [X,freq]=posFFTzeropad(x,Fs,N)

k=0:N-1;

T=N/Fs;

freq=k/T;

X=fft(x,N)/length(x);

cutOff = ceil(N/2);

X = X(1:cutOff);

freq = freq(1:cutOff);

Convolution

 Once we can do FFTs, we can do

convolution

 Matlab has several built-in

functions for this

 To convolve 2 vectors, it is just:

w = conv(u,v)

The Convolution Algorithm

xtrans = fft([x zeros(1,length(y)-1)])

ytrans = fft([y zeros(1,length(x)-1)])

conv(x,y) = ifft(xtrans.*ytrans)

2-D Convolution

A = rand(3);

B = rand(4);

C = conv2(A,B)

Example – edge-finding

s = [1 2 1; 0 0 0; -1 -2 -1];

A = zeros(30);

A(10:20,10:20) = ones(11);

mesh(A)

H = conv2(A,s);

figure

mesh(H)

V = conv2(A,s');

figure

mesh(V)

Results

0

10

20

30

0

10

20

30
0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

0

10

20

30

40
-4

-2

0

2

4

0

10

20

30

40

0

10

20

30

40
-4

-2

0

2

4

Digital Filters

 Matlab has several filters built in

 One is the filtfilt command

What is filtfilt?

 This is a zero-phase, forward and reverse

digital filter

 y=filtfilt(b, a, x)

 b and a define filter; x is the data to be

filtered

 The length of x must be at least 3 times

the order of the filter (max of length(a)

or length(b) minus 1)

filtfilt algorithm

 The filtfilt algorithm is based on a
difference equation

 Providing vectors a and b, determine the
outcome of the filter

 The difference equation is:

 y(n) = b(1)*x(n) + b(2)*x(n-1) + ... +
b(nb+1)*x(n-nb) - a(2)*y(n-1) - ... -
a(na+1)*y(n-na)

 b operates on the input vector (x) and a
operates on the output vector (y)

Butterworth Filters

 Matlab has tools to prepare these vectors

defining digital filters

 One example is the Butterworth filter

 [B,A] = butter (N,Wn,'high') designs

a highpass filter.

 N is order of filter

 Wn is normalized cutoff frequency

 B and A are sent to the filtfilt command

to actually filter data

Butterworth Filters (cont.)

 [B,A] = butter (N,Wn,'low') designs a

lowpass filter.

 [B,A] = butter(N,Wn,'stop') is a

bandstop filter if Wn = [W1 W2].

 Note: cutoff frequency is frequency where

magnitude of response is 1/sqrt(2)

 Hence, Wn is between 0 and 1, where 1 is

the Nyquist frequency

Example

 Matlab has a built-in chirp signal

 t=0:0.001:2

 y=chirp(t,0,1,150)

 This samples a chirp for 2 seconds at 1 kHz – The
frequency of the signal increases with time,
starting at 0 and crossing 150 Hz at 1 second

 sound(y) will play the sound through your sound
card

 spectrogram(y,256,250,256,1E3,'yaxis') will
show time dependence of frequency

 Nyquist Frequency is f/2 or 500 Hz

 To set cutoff at 150 Hz, set Wn=150/500=0.3

Spectrogram

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

50

100

150

200

250

300

350

400

450

500

Time

F
re

q
u
e
n
c
y
 (

H
z
)

Example - continued

 Plot FFT of chirp

 [YfreqD,freqRng] = positiveFFT(y,1000);

 stem(freqRng,abs(YfreqD));

0 50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

Example - continued

 Now use (lowpass) filter (10th order

Butterworth, cutoff at 150 Hz)

 [b,a]=butter(10,0.3,’low’)

 yfilt=filtfilt(b,a,y)

 [YfreqD,freqRng] = positiveFFT(yfilt,1000);

 stem(freqRng,abs(YfreqD));

0 50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

The script

Fs=1000;

t=0:1/Fs:2

y=chirp(t,0,1,150)

spectrogram(y,256,250,256,1E3,'yaxis')

[YfreqD,freqRng] = positiveFFT(y,Fs);

stem(freqRng,abs(YfreqD));

[b,a]=butter(10,0.3,'low');

yfilt=filtfilt(b,a,y);

[YfreqD,freqRng] =
positiveFFT(yfilt,1000);

stem(freqRng,abs(YfreqD));

Practice

 Compare to a high pass filter with the same
cutoff (150 Hz)

 Reminder: code for low pass filter is:

 t=0:0.001:2

 y=chirp(t,0,1,150)

 [b,a]=butter(10,0.3,’low’)

 yfilt=filtfilt(b,a,y)

 [YfreqD,freqRng] = positiveFFT(yfilt,1000);

 stem(freqRng,abs(YfreqD));

 This is in fftscripts.m

 You’ll need positiveFFT.m

Filter Response

 To see a filter response, use the freqz or

fvtool from the Signal Processing Toolkit

 From previous example:

freqz(b,a,128,Fs) or fvtool(b,a)

 This will readily show you impulse

response, step response, pole/zero plots,

etc.

Do you have the SP Toolbox?

 Type ver to check

 Type help to locate help specific to Signal

Processing Toolbox

freqz

0 50 100 150 200 250 300 350 400 450 500
-1000

-500

0

Frequency (Hz)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 50 100 150 200 250 300 350 400 450 500
-400

-200

0

200

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)

fvtool

fvtool – magnitude and phase

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-250

-200

-150

-100

-50

0

Normalized Frequency (rad/sample)

M
a
g
n
itu

d
e
 (

d
B

)

Magnitude (dB) and Phase Responses

-15.2547

-12.2054

-9.1561

-6.1069

-3.0576

-0.0083

P
h
a
s
e
 (

ra
d
ia

n
s
)

fvtool – impulse response

0 10 20 30 40 50 60 70

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Samples

A
m

p
lit

u
d
e

Impulse Response

fvtool – step response

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

Samples

A
m

p
lit

u
d
e

Step Response

fvtool – pole/zero plot

-1.5 -1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
a
g
in

a
ry

 P
a
rt

Pole/Zero Plot

Signal Processing Toolbox

 FIR filter design

 Digital filter design

 Characterization/Analysis

 Implementation (convolution, etc.)

 Analog filters

 Waveform generators

 Some GUI tools

Fundamentals

 Represent signals as vectors

 Step is all 1s

 Impulse is a 1 followed by all 0s

 Several GUI tools are available:

◦ sptool

◦ fvtool

◦ fdatool

To start:
fdatool

Waveform Generators

 sawtooth - periodic sawtooth wave

 square – periodic square wave

 tripuls – single triangular pulse

 rectpuls - single rectangular pulse

 gauspuls – Gaussian-modulated sinusoidal pulse

 sinc – sin(x)/x

 chirp – linear, quadratic (convex or concave)

 vco – voltage controlled oscillator

 pulstran – pulse train (builds up train of any of the

pulses above)

 For example: pulstran(t,d,@rectpuls,w) – d=delay

times, w=pulse widths

Using Waveforms

 Sawtooth creates sawtooth wave with a

width of 2*pi

 t=0:0.001:100;

 y=sawtooth(t);

 plot(t,y)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Spectral Analysis

 psd – power spectral density

 msspectrum – mean square

 pseudospectrum

Create Spectral Analysis Object

 h=spectrum.welch

 Options include:

◦ burg

◦ cov-covariance

◦ mcov-modified covariance

◦ periodogram

◦ welch

◦ yulear –Yule-Walker autoregressive

 mypower=msspectrum(h,y,’Fs’,Fs)

 plot(mypower)

The Script

h=spectrum.welch

mypower=msspectrum(h,y,'Fs',Fs)

plot(mypower)

mypowerfilt=msspectrum(h,yfilt,'Fs',Fs)

hold on

plot(mypowerfilt)

Result

0 50 100 150 200 250 300 350 400 450 500
-70

-60

-50

-40

-30

-20

-10

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)

Welch Mean-Square Spectrum Estimate

Image Processing and cosine

transforms

 You need the image processing toolbox

 I’ll say a bit more about this toolbox later

 For now, let’s look at the cosine
transform

 This tool represents an image as a sum of
sinusoids

 Much of the content of a figure is
contained in just a small number of these
sinusoids

 Hence, it is useful for image compression

Approach

 Read in image

 Take Discrete Cosine Transform

 Toss out higher order terms

 Compare result to original picture

 The built-in function dct2 uses an FFT-

like algorithm to compute transform

Script

RGB = imread('shuttle.jpg');

I = rgb2gray(RGB);

figure, imshow(I)

J = dct2(I);

J(abs(J) < 10) = 1e-8;

K = idct2(J);

figure, imshow(K,[0 255])

J = dct2(I);

J(abs(J) < 40) = 1e-8;

K = idct2(J);

figure, imshow(K,[0 255])

Statistics

 Transform matrix (J) originally has

288,960 elements (480x602)

 181,697 have abs less than 10

 274,221 have abs less than 40

First Compression (abs(J)<10)

First Compression (abs(J)<40)

Questions?

