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Case Study
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The Case

 Model as a differential equation (F=ma)

 Then convert to integral
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The Case
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The Case

 Note that since y=0 for t>/V, then we 

can write, for t> /V
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Simplifying…

 Look at end of bump (t=/V) and 

ignoring damping

 k=60,000 N/m

 m=900 kg

 =4 m        A=0.04 m     V= 75 mph
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Simplifying…

    dsssx   12.08sin53cos6.13
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What is numerical integration?

 We seek a numerical approximation to

 This is equivalent to finding the area 

under a curve
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Schematic
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General Approach

 Divide interval (a<x<b) up into small 

pieces

 Evaluate f(x) at discrete points

 Approximate integral as sum off 

approximate areas of pieces



Schematic
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Trapezoidal Rule

 This is the simplest rule

 Connect two points at top to create 

trapezoid

 Area of trapezoid is width times average 

height 



Trapezoidal Rule

Approximate 

Function

Original 

Function

x0 x1



Trapezoidal Rule

 Approximate Area=0.5*h*[F(x0)+F(x1)]

 Now we just add up all the little areas to 

get the full area

 For 2 divisions, we get 

 A= 0.5*h*{[F(x0)+F(x1)]+             

[F(x1)+F(x2)]}



Trapezoidal Rule

 Or: A= h*[0.5*F(x0)+F(x1)+0.5*F(x2)]

 The composite rule, then, is that we add up 

half the first and last points along with all the 

interior points
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Simpson’s Rule

 Similar to trapezoidal rule

 Use pairs of divisions

 Fit to parabola at top



Simpson’s Rule

Approximate 

Function

Original 

Function

x0 x1 x2



Simpson’s Rule

 The composite rule
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Matlab

 With Matlab, you can just use the 

QUADL function that is built into the 

program

 This will be both more accurate and 

faster than Excel

 It uses an adaptive Simpson’s rule



Matlab

a=0;

b=1;

integral=quadl('sin',a,b)

integral=quadl(@sin,a,b)



Practice

 The length of the supporting cable of a 

suspension bridge is given by the integral 

below.

 Solve this for a=60 m and h=15 m, where 

a is the half-length of the bridge and h is 

the tower height
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Practice

 The electric field due to a charged circular 

disk at a distance z along the disk axis is 

given below. 

 Find E at z=5 cm for R=6 cm, =300 C/m2
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Practice – car suspension

    dsssx   119.08sin53cos6.13
119.0
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Questions


