

Solving Linear Systems

Jake Blanchard University of Wisconsin - Madison Spring 2008

Case Study

- Solve for flow rates and pressures in a piping network
- 3 equations for flow in a leg
- I conservation equation
- Unknowns are 3 flow rates and a pressure

Schematic

 $a = \mathcal{L}_b + \mathcal{L}_c$ $c \cdot \mathbf{A}$ _c $-\mu_0$ μ_c $Q_b R_b = p_0 - p_b$ $Q_a R_a = p_a - p$ $Q_a = Q_b + Q$ $Q_c R_c = p_0 - p$ $=Q_{h}+$ $= p_0 -$ 0 0 0

 \bullet **p**_a, **p**_b, **p**_c, **R**_a, **R**_b, **R^c are known**

Solve for p_0 **,** Q_a **, Q^b , Q^c**

Solution Techniques

- Convert to matrix equation
- Solve using \ operator

$$
x + 2y + z = 1
$$

$$
x + y - z = 0
$$

$$
2x - y + 2z = 1
$$

$$
\begin{bmatrix} 1 & 2 & 1 \ 1 & 1 & -1 \ 2 & -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{Bmatrix} 1 \\ 0 \\ 1 \end{Bmatrix}
$$

Terminology

- **Ax=b**
- A=matrix
- x=solution vector
- b=loading vector (right-hand-side of equation)
- A and b known, solve for x

Using Matlab

- **A=[1 2 1; 1 1 -1; 2 -1 2];**
- **b=[1; 0; 1];**
- **x=A\b**

Practice

• Solve this problem (previous slide)

Practice

• Revise that problem to this:

$$
\begin{vmatrix} x + 2y + z = 1 \\ x - z = 0 \\ 2x - y = 1 \end{vmatrix}
$$

Uniqueness of Solutions

- For a system of N equations in N unknowns, a unique solution exists only if the determinant of A is not zero
- In Matlab, det(A) will give the determinant of A

Solve this matrix equation

Condition Numbers

- Some matrices are "almost singular"
- The condition number is a measure of this characteristic
- If the condition number is large, errors in solving corresponding matrix equations will tend to be large
- The command is **cond(A)**

What are the condition numbers of these matrices?

The Hilbert matrix is defined below...

• Find the condition number of the Hilbert matrix for $N=3, 5,$ and 7

$$
H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}
$$

Code for creating Hilbert matrix

Hsize=7 for i=1:Hsize for j=1:Hsize hilb(i,j)=1/(i+j-1); end end disp(hilb)

Solve pipe flow problem

- **Pa=12,500 lb/ft²**
- **Pb=3,500 lb/ft²**
- **Pc=2,000 lb/ft²**
- $R_a = R_b = R_c = 6,000$ lb-s/ft⁵

 $a = \mathcal{L}_b + \mathcal{L}_c$ $c \cdot \mathbf{A}$ _c $-\mu_0$ μ_c $Q_b R_b = p_0 - p_b$ $Q_a R_a = p_a - p$ $Q_a = Q_b + Q$ $Q_c R_c = p_0 - p$ $=Q_{h}+$ $= p_0 -$ 0 0 0

My Matrix

 $0 = 0$ $0 + 0$ $0 + R_b Q_b + 0 - p_0 = -p$ $+0$ $+0$ $c \mathcal{L}_c$ P_0 – P_c $b\mathcal{L}_b$ $\qquad \qquad P_0$ $\qquad \qquad P_b$ $+0$ $+0$ $+ p_0 =$ Q_a $-Q_b$ $-Q_c$ $+0$ = $P + Q$ $+ R_c Q_c$ $-p_0$ $=$ $-p$ $a\mathcal{L}_a$ iv iv P_0 – P_a $R_a Q_a$ +0 +0 + p_0 = p_a

 \mathbf{I} $\overline{}$ \int \mathcal{L} $\overline{}$ $\left\{ \right.$ $\begin{matrix} \end{matrix}$ \mathbf{I} \mathcal{L} $\overline{\mathcal{L}}$ $\overline{}$ \mathcal{L} $\big\{$ $\begin{array}{c} \end{array}$ $\overline{}$ $-p_b$ $=$ \mathbb{R} \mathbb{R} \int \mathbb{R} \mathbb{R} $\left\{ \right.$ $\begin{matrix} \end{matrix}$ \mathbf{r} $\int Q_c$ $\overline{\mathcal{L}}$ $\overline{}$ \mathcal{L} $\left\{ \right.$ $\int Q_a$ $\overline{}$ $0 \quad 0 \quad R_{c} \quad -1$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \vert $\overline{\mathsf{L}}$ $\sqrt{R_a}$ -1 $\overline{}$ 1 -1 -1 0 $||p_0||$ 0 0 R_b 0 -1 0 0 0 *c p a p b Q* R_c *p*

