

Interpolation

Jake Blanchard University of Wisconsin - Madison Spring 2008

Case Study

 You've taken data for measured temperature as a function of time from a hot water faucet

Data

Time (s)	Temperature (F)				
0	72.5				
I.	78.1				
2	86.4				
3	92.3				
4	110.6				
5	111.5				
6	109.3				
7	110.2				
8	110.5				
9	109.9				
10	110.2				

Questions

- Estimate temperature at t=0.6, 2.5, 4.7, and 8.9 seconds
- Estimate time it will take to reach T=75, 85, 90, and 105 degrees

Interpolation

- Defining a function that takes on specified values at specified points
- Unlike curve fits, interpolation always goes through the data points
- Generally piece-wise, rather than covering entire range
- Often, first approach is to draw straight lines between points

Polynomials

- For N data points, there is a unique polynomial (usually of order n-1) that goes through each point
- This is an interpolating polynomial, because it goes exactly through each data point
- Problem: between data points, function can vary by large amount

Piecewise linear interpolation

• Connect each data point by a straight line

Piecewise Cubic Interpolation

 Goes through data points and has continuous first and second derivative from piece to piece

Shape-Preserving Interpolation

- Can be thought of as "visibly appealing"
- Abandon continuous second derivative
- Try to avoid large deviation between points

Example

Without Polynomial

Matlab functions

- interpI I-D linear interpolation
- interp2 2-D linear interpolation

x,y=data vectors xi is vector of interpolation points

- yi = interpl(x,y,xi,'spline')
- yi = interpl(x,y,xi,'cubic') shapepreserving
- yi = interpl(x,y,xi,'linear')

I-D interpolation

Script

time=0:10; temps=[72.5 78.1 86.4 92.3 110.6 111.5 109.3 plot(time,temps,'o') xlabel('Time (s)') ylabel('Temperature (F)') plotvals=0:0.1:10; yvals=interpl(time,temps,plotvals,'linear') hold on plot(plotvals,yvals) yvals=interpl(time,temps,plotvals,'cubic') plot(plotvals,yvals,'r') yvals=interpl(time,temps,plotvals,'spline') plot(plotvals,yvals,'g')

Practice

- Computer controlled machines are used to shape a car fender
- The points on the next slide define the fender
- Use interpolation to define the entire fender

X (ft)	0	.25	.75	1.25	1.5	1.75	1.875	2	2.125	2.25
Y	1.2	1.18	1.1	I	0.92	0.8	0.7	0.55	0.35	0

Practice – Trace of My Hand

- Download and run handdata.m
- Plot x vs. y
- Let t=1:76
- Interpolate x vs. t and y vs. t
- Now plot curve for hand vs. data

