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Example Problem

 Consider an 80 kg paratrooper falling 

from 600 meters. 

 The trooper is accelerated by gravity, but 

decelerated by drag on the parachute

 This problem is from Cleve Moler’s book 

called Numerical Computing with Matlab 

(my favorite Matlab book)



Governing Equation

 m=paratrooper mass (kg)

 g=acceleration of gravity (m/s2)

 V=trooper velocity (m/s)

 Initial velocity is assumed to be zero
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Solving ODE’s Numerically

 Euler’s method is the simplest approach

 Consider most general first order ODE:  

dy/dt=f(t,y)

 Approximate derivative as (yi+1-yi)/dt

 Then:
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A Problem

 Unfortunately, Euler’s method is too good 

to be true

 It is unstable, regardless of the time step 

chosen

 We must choose a better approach

 The most common is 4th order Runge-

Kutta



Runge-Kutta Techniques

 Runge-Kutta uses 

a similar, but more 

complicated 

stepping algorithm
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Approach

 Choose a time step

 Set the initial condition

 Run a series of steps

 Adjust time step

 Continue



Preparing to Solve Numerically

 First, we put the equation in the form

 For our example, the equation becomes:
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Solving Numerically

 There are a variety of ODE solvers in 

Matlab

 We will use the most common: ode45

 We must provide:

◦ a function that defines the function derived 

on previous slide

◦ Initial value for V

◦ Time range over which solution should be 

sought



How ode45 works

 ode45 takes two steps, one with a 

different error order than the other

 Then it compares results

 If they are different, time step is reduced 

and process is repeated

 Otherwise, time step is increased



The Solution

clear all

timerange=[0 15]; %seconds

initialvelocity=0; %meters/second

[t,y]=ode45(@f,timerange, initialvelocity)

plot(t,y)

ylabel('velocity (m/s)')

xlabel('time(s)')



The Function

function rk=f(t,y)

mass=80;

g=9.81;

rk=-g-4/15*y.*abs(y)/mass;



My Solution
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Practice

 Download the file odeexample.m

 Run it to reproduce my result

 Run again out to t=30 seconds

 Run again for an initial velocity of 10 

meters/second

 Change to k=0 and run again (gravity 

only)



Practice

 The outbreak of an insect population can 

be modeled with the equation below.

 R=growth rate

 C=carrying capacity

 N=# of insects

 Nc=critical population

 Second term is due to bird predation
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Parameters

 0<t<50 days

 R=0.55 /day

 N(0)=10,000

 C=10,000

 Nc=10,000

 r=10,000 /day

 What is steady 

state population?

 How long does it 

take to get there?
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 Note:  this is a first order ode

 Skeleton script is in file: insects.m



Insects.m

function insects

clear all

tr=[0 ??];

initv=??;

[t,y]=ode45(@f, tr, initv);

plot(t,y)

ylabel('Number of Insects')

xlabel('time')

%

function rk=f(t,y)

rk= ??;



Practice

 Let h be the depth of water in a spherical 

tank

 If we open a drain at the tank bottom, the 

pressure at the bottom will decrease as 

the tank empties, so the drain rate 

decreases with h

 Find the time to empty the tank



Parameters

 R=5 ft; Initial height=9 ft

 1 inch hole for drain
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How long does it take to drain 

the tank?



Rockets

 A rocket’s mass decreases as it burns fuel

 Find the final velocity of a rocket if:

 T=48000 N; m0=2200 kg

 R=0.8; g=9.81 m/s2; b=40 s
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Options

 Options are available to:

◦ Change relative or absolute error tolerances

◦ Maximum number of steps

◦ Etc.



Some Other Matlab routines

 ode23 – like ode45, but lower order

 ode15s – stiff solver

 ode23s – higher order stiff solver



Advanced IVPs

 Second order equations

 Stiff equations



Second Order Equations

 Consider a falling object with drag
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Preparing for Solution

 We must break second order equation 

into set of first order equations

 We do this by introducing new variable 

(z=dy/dt)
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Solving

 Now we have to send a set of equations 

and a set of initial values to the ode45 

routine

 We do this via vectors

 Let w be vector of solutions: w(1)=y and 

w(2)=z

 Let r be vector of equations: r(1)=dy/dt

and r(2)=dz/dt



Function to Define Equation
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function r=rkfalling(t,w)

...

r=zeros(2,1);

r(1)=w(2);

r(2)= -k*w(2).*abs(w(2))-g;



The Routines

tr=[0 15]; %seconds

initv=[600 0]; %start 600 m high

[t,y]=ode45(@rkfalling, tr, initv)

plot(t,y(:,1))

ylabel('x (m)')

xlabel('time(s)')

figure

plot(t,y(:,2))

ylabel('velocity (m/s)')

xlabel('time(s)')



Function

function r=rkfalling(t,w)

mass=80;

k=4/15/mass;

g=9.81;

r=zeros(2,1);

r(1)=w(2);

r(2)= -k*w(2).*abs(w(2))-g;



General Second Order Equations

 We can write a general 

second order equation 

as shown:

 To solve:

◦ Define f

◦ Set initial conditions

◦ Set time range ),,(
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The Routines

tr=[0 15]; %seconds

initv=[600 0]; %start 600 m high

[t,y]=ode45(@rkfalling, tr, initv)

plot(t,y(:,1))

ylabel('x (m)')

xlabel('time(s)')

figure

plot(t,y(:,2))

ylabel('velocity (m/s)')

xlabel('time(s)')

function r=rkfalling(t,w)

mass=80;

k=4/15/mass;

g=9.81;

r=zeros(2,1);

r(1)=w(2);

r(2)= -k*w(2).*abs(w(2))-g;



Practice

 Return to paratrooper problem.

 Download ode2ndOrder.m

 Run to duplicate earlier results for 

velocity

 Change initial velocity to 10 m/s and run 

again
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Practice-nonlinear pendulum

 r=1 m; g=9.81 m/s2

 Initial angle =/8, /2, -0.1
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Systems

 For systems of first order ODEs, just 

define both equations.



Practice
 Consider an ecosystem of rabbits r and 

foxes f. Rabbits are fox food.

 Start with 300 rabbits and 150 foxes
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 r=w(1)

 f=w(2)

function z=rkfox(t,w)

alpha=0.01;

r=zeros(2,1);

z(1)=2*w(1)-alpha*w(1)*w(2);

z(2)= -w(2)+alpha*w(1)*w(2);



Approach

 Start with ode2ndOrder.m

 Modify with function from previous slide

 Put in time range (0<t<15) and initial 

conditions



Higher Order Equations

 Suppose we want to model a projectile
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Now we need 4 1st order ODEs
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The Code

clear all;

tspan=[0 1.1]

wnot(1)=0; wnot(2)=10;

wnot(3)=0; wnot(4)=10;

[t,y]=ode45('rkprojectile',tspan,wnot);

plot(t,y(:,1),t,y(:,3))

figure

plot(y(:,1),y(:,3))



The Function

function r=rkprojectile(t,w)

g=9.81;

x=w(1); s=w(2); y=w(3); z=w(4);

vel=sqrt(s.^2+z.^2);

r=zeros(4,1);

r(1)=s;

r(2)=-s*vel;

r(3)=z;

r(4)=-z*vel-g;



Questions


