
Solving Initial Value Problems

Jake Blanchard

University of Wisconsin - Madison

Spring 2008

Example Problem

 Consider an 80 kg paratrooper falling

from 600 meters.

 The trooper is accelerated by gravity, but

decelerated by drag on the parachute

 This problem is from Cleve Moler’s book

called Numerical Computing with Matlab

(my favorite Matlab book)

Governing Equation

 m=paratrooper mass (kg)

 g=acceleration of gravity (m/s2)

 V=trooper velocity (m/s)

 Initial velocity is assumed to be zero

VVmg
dt

dV
m *

15

4

Solving ODE’s Numerically

 Euler’s method is the simplest approach

 Consider most general first order ODE:

dy/dt=f(t,y)

 Approximate derivative as (yi+1-yi)/dt

 Then:

),(

),(

1

1

iii

i
ii

ytftyy

ytf
t

yy

dt

dy

A Problem

 Unfortunately, Euler’s method is too good

to be true

 It is unstable, regardless of the time step

chosen

 We must choose a better approach

 The most common is 4th order Runge-

Kutta

Runge-Kutta Techniques

 Runge-Kutta uses

a similar, but more

complicated

stepping algorithm

6

)(2

),(*

)
2

,
2

(*

)
2

,
2

(*

),(*

4321
1

34

2
3

1
2

1

kkkk
yy

kyttftk

k
y

t
tftk

k
y

t
tftk

ytftk

ii

i

i

i

i

Approach

 Choose a time step

 Set the initial condition

 Run a series of steps

 Adjust time step

 Continue

Preparing to Solve Numerically

 First, we put the equation in the form

 For our example, the equation becomes:

m

VV
g

dt

dV *

15

4

),(ytf
dt

dy

Solving Numerically

 There are a variety of ODE solvers in

Matlab

 We will use the most common: ode45

 We must provide:

◦ a function that defines the function derived

on previous slide

◦ Initial value for V

◦ Time range over which solution should be

sought

How ode45 works

 ode45 takes two steps, one with a

different error order than the other

 Then it compares results

 If they are different, time step is reduced

and process is repeated

 Otherwise, time step is increased

The Solution

clear all

timerange=[0 15]; %seconds

initialvelocity=0; %meters/second

[t,y]=ode45(@f,timerange, initialvelocity)

plot(t,y)

ylabel('velocity (m/s)')

xlabel('time(s)')

The Function

function rk=f(t,y)

mass=80;

g=9.81;

rk=-g-4/15*y.*abs(y)/mass;

My Solution

0 5 10 15
-60

-50

-40

-30

-20

-10

0

v
 (

m
/s

)

time(s)

Practice

 Download the file odeexample.m

 Run it to reproduce my result

 Run again out to t=30 seconds

 Run again for an initial velocity of 10

meters/second

 Change to k=0 and run again (gravity

only)

Practice

 The outbreak of an insect population can

be modeled with the equation below.

 R=growth rate

 C=carrying capacity

 N=# of insects

 Nc=critical population

 Second term is due to bird predation

22

2

1
NN

rN

C

N
RN

dt

dN

c

Parameters

 0<t<50 days

 R=0.55 /day

 N(0)=10,000

 C=10,000

 Nc=10,000

 r=10,000 /day

 What is steady

state population?

 How long does it

take to get there?

22

2

1
NN

rN

C

N
RN

dt

dN

c

 Note: this is a first order ode

 Skeleton script is in file: insects.m

Insects.m

function insects

clear all

tr=[0 ??];

initv=??;

[t,y]=ode45(@f, tr, initv);

plot(t,y)

ylabel('Number of Insects')

xlabel('time')

%

function rk=f(t,y)

rk= ??;

Practice

 Let h be the depth of water in a spherical

tank

 If we open a drain at the tank bottom, the

pressure at the bottom will decrease as

the tank empties, so the drain rate

decreases with h

 Find the time to empty the tank

Parameters

 R=5 ft; Initial height=9 ft

 1 inch hole for drain

210

0334.0

hh

h

dt

dh

How long does it take to drain

the tank?

Rockets

 A rocket’s mass decreases as it burns fuel

 Find the final velocity of a rocket if:

 T=48000 N; m0=2200 kg

 R=0.8; g=9.81 m/s2; b=40 s

b

rt
mm

mgT
dt

dv
m

10

Options

 Options are available to:

◦ Change relative or absolute error tolerances

◦ Maximum number of steps

◦ Etc.

Some Other Matlab routines

 ode23 – like ode45, but lower order

 ode15s – stiff solver

 ode23s – higher order stiff solver

Advanced IVPs

 Second order equations

 Stiff equations

Second Order Equations

 Consider a falling object with drag

0)0(

)0(

15

4

y

hy

yy
m

gy

Preparing for Solution

 We must break second order equation

into set of first order equations

 We do this by introducing new variable

(z=dy/dt)

gzz
m

z

yz

yz

15

4

0)0(;)0(

15

4

zhy

zy

gzz
m

z

Solving

 Now we have to send a set of equations

and a set of initial values to the ode45

routine

 We do this via vectors

 Let w be vector of solutions: w(1)=y and

w(2)=z

 Let r be vector of equations: r(1)=dy/dt

and r(2)=dz/dt

Function to Define Equation

gww
mdt

dz

wz
dt

dy

)2(*)2(
15

4

)2(

function r=rkfalling(t,w)

...

r=zeros(2,1);

r(1)=w(2);

r(2)= -k*w(2).*abs(w(2))-g;

The Routines

tr=[0 15]; %seconds

initv=[600 0]; %start 600 m high

[t,y]=ode45(@rkfalling, tr, initv)

plot(t,y(:,1))

ylabel('x (m)')

xlabel('time(s)')

figure

plot(t,y(:,2))

ylabel('velocity (m/s)')

xlabel('time(s)')

Function

function r=rkfalling(t,w)

mass=80;

k=4/15/mass;

g=9.81;

r=zeros(2,1);

r(1)=w(2);

r(2)= -k*w(2).*abs(w(2))-g;

General Second Order Equations

 We can write a general

second order equation

as shown:

 To solve:

◦ Define f

◦ Set initial conditions

◦ Set time range),,(

),,(
2

2

zytf
dt

dz

z
dt

dy

or

dt

dy
ytf

dt

yd

The Routines

tr=[0 15]; %seconds

initv=[600 0]; %start 600 m high

[t,y]=ode45(@rkfalling, tr, initv)

plot(t,y(:,1))

ylabel('x (m)')

xlabel('time(s)')

figure

plot(t,y(:,2))

ylabel('velocity (m/s)')

xlabel('time(s)')

function r=rkfalling(t,w)

mass=80;

k=4/15/mass;

g=9.81;

r=zeros(2,1);

r(1)=w(2);

r(2)= -k*w(2).*abs(w(2))-g;

Practice

 Return to paratrooper problem.

 Download ode2ndOrder.m

 Run to duplicate earlier results for

velocity

 Change initial velocity to 10 m/s and run

again

dt

dy

dt

dy
mg

dt

yd
m

15

4
2

2

Practice-nonlinear pendulum

 r=1 m; g=9.81 m/s2

 Initial angle =/8, /2, -0.1

)sin(
2

2

r

g

dt

d

Systems

 For systems of first order ODEs, just

define both equations.

Practice
 Consider an ecosystem of rabbits r and

foxes f. Rabbits are fox food.

 Start with 300 rabbits and 150 foxes

 =0.01

rff
dt

df

rfr
dt

dr

 2

 r=w(1)

 f=w(2)

function z=rkfox(t,w)

alpha=0.01;

r=zeros(2,1);

z(1)=2*w(1)-alpha*w(1)*w(2);

z(2)= -w(2)+alpha*w(1)*w(2);

Approach

 Start with ode2ndOrder.m

 Modify with function from previous slide

 Put in time range (0<t<15) and initial

conditions

Higher Order Equations

 Suppose we want to model a projectile

22 yxV

gVyky

Vxkx

Now we need 4 1st order ODEs

22 zsV

gzVkz

zy

sVks

sx

The Code

clear all;

tspan=[0 1.1]

wnot(1)=0; wnot(2)=10;

wnot(3)=0; wnot(4)=10;

[t,y]=ode45('rkprojectile',tspan,wnot);

plot(t,y(:,1),t,y(:,3))

figure

plot(y(:,1),y(:,3))

The Function

function r=rkprojectile(t,w)

g=9.81;

x=w(1); s=w(2); y=w(3); z=w(4);

vel=sqrt(s.^2+z.^2);

r=zeros(4,1);

r(1)=s;

r(2)=-s*vel;

r(3)=z;

r(4)=-z*vel-g;

Questions

