Homework 3

Problem I

- For the hot water data on the right, what would the temperature be at 1.7 seconds using linear interpolation?
- How would this change using splines?

Time (s)	Temp (F)
0	72.5
I	78. I
2	86.4
3	92.3
4	110.6
5	111.5
6	109.3
7	110.2
8	110.5
9	109.9
10	110.2

Problem 2

 For the hot water data on the right, at what time would we expect the temperature to reach 100 F (use splines)

Tim e (s)	Temp (F)
0	72.5
I	78. I
2	86.4
3	92.3
4	110.6
5	111.5
6	109.3
7	110.2
8	110.5
9	109.9
10	110.2

Problem 3

- The electric field due to a charged circular disk at a distance z along the disk axis is given below.
- Find E at z=5 cm for R=6 cm, σ =300 μ C/m²

$$E = \frac{\sigma z}{4\varepsilon_0} \int_0^R \frac{2rdr}{(z^2 + r^2)^{1.5}}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \quad C^2 / N - m^2$$

Problem 4

- The temperature of the ground at a depth x for surface temperature T_s and initial temperature T_i is given on the next slide
- How deep should a water main be buried if we want to keep the water from freezing if the surface is at -15 C for 60 days?

Parameters

- t=60*24*3600
- $T_s = -15 C$
- $T_i = 20 C$
- T=0 C
- $\alpha = 1.38 \times 10^{-7} \text{ m}^2/\text{s}$

$$\frac{T - T_s}{T_i - T_s} = erf\left(\frac{x}{2\sqrt{\alpha t}}\right)$$